学术活动(2021-16) 杨四辈《Weighted global gradient estimates for elliptic boundary value problems on non-smooth domains》
系列学术活动之(16) | |
题 目: | Weighted global gradient estimates for elliptic boundary value problems on non-smooth domains
|
摘 要: | Let $n\ge2$ and $\Omega\subset\mathbb{R}^n$ be a bounded NTA domain. In this talk, we introduce (weighted) global gradient estimates for Dirichlet/Neumann boundary value problems of second order elliptic equations of divergence form with an elliptic symmetric part and a BMO anti-symmetric part in $\Omega$. More precisely, for any given $p\in(2,\infty)$, we show that a weak reverse H\older inequality with exponent $p$ implies the global $W^{1,p}$ estimate and the global weighted $W^{1,q}$ estimate, with $q\in[2,p]$ and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. We further give some global gradient estimates for solutions to Dirichlet/Neumann boundary value problems of second order elliptic equations of divergence form with small $\mathrm{BMO}$ symmetric part and small $\mathrm{BMO}$ anti-symmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, $C^1$ domains, or (semi-)convex domains, in weighted Lebesgue spaces. This talk is based on the joint work with Profs. Dachun Yang and Wen Yuan. |
报 告 人: | 杨四辈,博士,兰州大学 |
时 间: | 2021年10月22日19:00-21:00 |
地 点: | 腾讯会议 |
报告人简介: 杨四辈, 2013年毕业于北京师范大学, 获博士学位, 现为兰州大学数学与统计学院青年教授, 主要从事调和分析及其应用的研究. 与他人合作, 已在Trans. Amer. Math. Soc., J. Differential Equations, Indiana Univ. Math. J., Rev. Mat. Iberoam., Commun. Contemp. Math., J. Geom. Anal.等国内外重要刊物上发表学术论文40余篇. 主持完成国家自然科学基金青年项目1项,目前主持国家自然科学基金面上项目1项. |