学术活动(146)

Extremum Estimates of L1-norm of the Weights for Eigenvalue Problems of Vibrating String Equations Based on Critical Equations

发布者:数学与统计学院   发布时间:2020-12-02  浏览次数:14



系列学术活动之(146)

题    目:


1. Extremum Estimates of  L1-norm of the Weights for Eigenvalue Problems of   Vibrating String Equations Based  on Critical Equations

2. Spectral Theory of Fractional Differential Equations            



摘    要:

I For the eigenvalue problems of vibrating string equations with separated boundary conditions, we estimate the minimum of the L1-norm of weights provided that the first eigenvalue is negative.  Applying the critical equations of the weights, the minimum is obtained in terms of the first eigenvalue and the parameter in boundary conditions.

II  This talk introduces the eigenvalue problem of a fractional differential equation which is a foundation model of a bar of finite length with long-range interactions arising from non-local continuum mechanics. We show that this problem has countable simple real eigenvalues and the

corresponding eigenfunctions form a complete orthogonal system in the Hilbert space L2.  Furthermore,  the asymptotic behavior of eigenvalues and the numbers of zeros of eigenfunctions are studied by using the analytic perturbation theory.  The IVP of such equations are also studied.



报 告 人:

綦建刚 教授 (山东大学)

时    间:

202012419:00-22:30

地    点:

腾讯会议号648 408 337


报告人简介:

   綦建刚,理学博士,现为山东大学(威海)数学与统计学院常务副院长,教授,博士生导师,美国数学学会评论员。曾任宁波大学数学系系主任应用数学研究所副所长。2008年调入山东大学(威海)数学与统计学院。曾获得山东省高等学校优秀科研成果奖二等奖、山东省研究生优秀科技创新成果奖三等奖各一项。长期从事微分方程、边值问题、微分算子谱理论的相关研究,主持或完成国家自然科学基金面上项目、山东省自然科学基金面上项目、浙江省自然科学基金面上项目多项,作为主要参与者参与国家重点项目一项。在国内外权威期刊发表论文四十余篇。